Aerospace, Vol. 11, Pages 930: Prediction of Temperature Distribution on an Aircraft Hot-Air Anti-Icing Surface by ROM and Neural Networks
Aerospace doi: 10.3390/aerospace11110930
Authors: Ziying Chu Ji Geng Qian Yang Xian Yi Wei Dong
To address the inefficiencies and time-consuming nature of traditional hot-air anti-icing system designs, reduced-order models (ROMs) and machine learning techniques are introduced to predict anti-icing surface temperature distributions. Two models, AlexNet combined with Proper Orthogonal Decomposition (POD-AlexNet) and multi-CNNs with GRU (MCG), are proposed by comparing several classic neural networks. Design variables of the hot-air anti-icing cavity are used as inputs of the two models, and the corresponding surface temperature distribution data serve as outputs, and then the performance of these models is evaluated on the test set. The POD-AlexNet model achieves a mean prediction accuracy of over 95%, while the MCG model reaches 96.97%. Furthermore, the proposed model demonstrates a prediction time of no more than 5.5 ms for individual temperature samples. The proposed models not only provide faster predictions of anti-icing surface temperature distributions than traditional numerical simulation methods but also ensure acceptable accuracy, which supports the design of aircraft hot-air anti-icing systems based on optimization methods such as genetic algorithms.