Applied Sciences, Vol. 13, Pages 12700: Analysis of the Effect of Ultra-Fine Cement on the Microscopic Pore Structure of Cement Soil in a Peat Soil Environment

5 months ago 23

Applied Sciences, Vol. 13, Pages 12700: Analysis of the Effect of Ultra-Fine Cement on the Microscopic Pore Structure of Cement Soil in a Peat Soil Environment

Applied Sciences doi: 10.3390/app132312700

Authors: Jing Cao Chenhui Huang Huafeng Sun Yongfa Guo Wenyun Ding Guofeng Hua

Treating peat soil foundations around Dianchi Lake and Erhai Lake in Yunnan is a complex problem in practical engineering projects. Peat soil solely reinforced with ordinary cement (OPC) does not satisfy demand. This study aims to solidify soil to achieve better mechanical properties. The preparation of peat soil incorporates a humic acid (HA) reagent into cohesive soil, and cement and ultra-fine cement (UFC) are mixed by stirring to prepare cement soil samples. They are then immersed in fulvic acid (FA) solution to simulate cement soil in the actual environment. X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and pores and cracks analysis system (PCAS) tests are used to study the impact of the UFC on the microscopic pore structure of cement soil in a peat soil environment. The unconfined compressive strength (UCS) test is used for verification. The microscopic test results indicate that incorporating UFC enhances the specimen’s micropore structure. The XRD test results show the presence of C–S–H, C–A–S–H, and C–A–H. SEM and PCAS tests show that the UFC proportion increases by between 0% and 10%, and the percentage reduction in the macropore volume is the largest, at 38.84%. When the UFC admixture is 30%, the cumulative reduction in the percentage of macropore volume reaches 71.55%. The MIP test results show that the cumulative volume greater than 10 µm in pore size decreases from 7.68% to 0.17% with an increase in the UFC proportion. The UCS test results show that the maximum strength growth of cement soil is 12.99% when the UFC admixture is 0–10%. Incorporating UFC to form a compound curing agent solves the problem of the traditional reinforcement treatment of peat soil foundation being undesirable and decreases the amount of cement. This study provides practical guidance for reducing carbon emissions in actual projects.

Read Entire Article