Brain Sciences, Vol. 13, Pages 382: Protective Effects of Sodium Para-Aminosalicylic Acid on Lead and Cadmium Co-Exposure in SH-SY5Y Cells

1 year ago 31

Brain Sciences, Vol. 13, Pages 382: Protective Effects of Sodium Para-Aminosalicylic Acid on Lead and Cadmium Co-Exposure in SH-SY5Y Cells

Brain Sciences doi: 10.3390/brainsci13030382

Authors: Jian-Chao Peng Yue Deng Han-Xiao Song Yuan-Yuan Fang Cui-Liu Gan Jun-Jie Lin Jing-Jing Luo Xiao-Wei Zheng Michael Aschner Yue-Ming Jiang

Background: Combined exposure to lead and cadmium is common in occupational environments. However, the effects of co-exposure to Pb-Cd on neurotoxicity have not been fully clarified. Sodium para-aminosalicylic acid (PAS-Na) has previously been shown to protect neurons from Pb-induced toxicity. This study aimed to investigate the beneficial effect of PAS-Na against co-exposure to Pb-Cd-induced neurodegeneration in SH-SY5Y cells. Methods: The MTT assay was used to detect the effects of Pb and Cd alone, or in combination, on SH-SY5Y cell survival. The effects of Pb and Cd alone or in combination on oxidative stress were assessed by reactive oxygen species (ROS) level. Nrf2, the master switch for antioxidant responses, was detected by immunofluorescence. Protein expression levels of PI3K, Akt, p-Akt, Nrf2 and HO-1 were determined by Western blot analysis. Results: MTT assay results established that the survival rate of SH-SY5Y cells was not significantly affected by exposure to 1 μmol/L lead, 0.25 μmol/L cadmium, and 1-fold Pb-Cd mixture (1 μmol/L Pb + 0.25 μmol/L Cd), while 10-fold Pb-Cd combined exposure (10 μmol/L Pb + 2.5 μmol/L Cd) significantly reduced the survival rate of SH-SY5Y cells. Combined Pb-Cd exposure significantly increased intracellular ROS levels, and N-Acetyl-L-cysteine (NAC) treatment in the 10 μmol/L Pb + 2.5 μmol/L Cd group significantly decreased ROS expression levels, attenuating the levels of oxidative stress. Protein expression of PI3K and p-Akt significantly decreased in the 10 μmol/L Pb + 2.5 μmol/L Cd group, while the expression of PI3K and p-Akt protein increased after PAS-Na intervention. Immunofluorescence analysis showed that levels of Nrf2 in the nucleus increased in the 10 μmol/L Pb + 2.5 μmol/L Cd group, along with Nrf2 protein levels, suggesting that Nrf2 was translocated from the cytoplasm into the nucleus upon combined Pb-Cd exposure. In addition, HO-1 protein expression level, a downstream gene product of Nrf2, was increased. In response to NAC intervention, HO-1 protein expression levels significantly decreased. PAS-Na had the same intervention effect as NAC. Conclusion: Combined exposure to Pb-Cd induced oxidative stress and cytotoxicity in SH-SY5Y cells. PAS-Na displayed antagonistic effects on neurodegenerative changes induced by combined Pb-Cd exposure; hence, it may afford a novel treatment modality for exposure to these metals.

Read Entire Article