Diagnostics, Vol. 14, Pages 962: Predictive Modeling for Spinal Metastatic Disease

1 week ago 26

Diagnostics, Vol. 14, Pages 962: Predictive Modeling for Spinal Metastatic Disease

Diagnostics doi: 10.3390/diagnostics14090962

Authors: Akash A. Shah Joseph H. Schwab

Spinal metastasis is exceedingly common in patients with cancer and its prevalence is expected to increase. Surgical management of symptomatic spinal metastasis is indicated for pain relief, preservation or restoration of neurologic function, and mechanical stability. The overall prognosis is a major driver of treatment decisions; however, clinicians’ ability to accurately predict survival is limited. In this narrative review, we first discuss the NOMS decision framework used to guide decision making in the treatment of patients with spinal metastasis. Given that decision making hinges on prognosis, multiple scoring systems have been developed over the last three decades to predict survival in patients with spinal metastasis; these systems have largely been developed using expert opinions or regression modeling. Although these tools have provided significant advances in our ability to predict prognosis, their utility is limited by the relative lack of patient-specific survival probability. Machine learning models have been developed in recent years to close this gap. Employing a greater number of features compared to models developed with conventional statistics, machine learning algorithms have been reported to predict 30-day, 6-week, 90-day, and 1-year mortality in spinal metastatic disease with excellent discrimination. These models are well calibrated and have been externally validated with domestic and international independent cohorts. Despite hypothesized and realized limitations, the role of machine learning methodology in predicting outcomes in spinal metastatic disease is likely to grow.

Read Entire Article