Drones, Vol. 7, Pages 688: Energy Minimization in Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle-Enabled Wireless Powered Mobile Edge Computing Systems with Rate-Splitting Multiple Access

5 months ago 19

Drones, Vol. 7, Pages 688: Energy Minimization in Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle-Enabled Wireless Powered Mobile Edge Computing Systems with Rate-Splitting Multiple Access

Drones doi: 10.3390/drones7120688

Authors: Jihyung Kim Eunhye Hong Jaemin Jung Jinkyu Kang Seongah Jeong

In this study, a reconfigurable intelligent surface (RIS)-assisted wireless-powered mobile edge computing (WP-MEC) system is proposed, where a single-antenna unmanned aerial vehicle (UAV)-mounted cloudlet provides offloading opportunities to K user equipments (UEs) with a single antenna, and the K UEs can harvest the energy from the broadcast radio-frequency signals of the UAV. In addition, rate-splitting multiple access is used to provide offloading opportunities to multiple UEs for effective power control and high spectral efficiency. The aim of this paper is to minimize the total energy consumption by jointly optimizing the resource allocation in terms of time, power, computing frequency, and task load, along with the UAV trajectory and RIS phase-shift matrix. Since coupling issues between optimization variable designs are caused, however, an alternating optimization-based algorithm is developed. The performance of the proposed algorithm is verified via simulations and compared with the benchmark schemes of partial optimizations of resource allocation, path planning, and RIS phase design. The proposed algorithm exhibits high performance in WP-MEC systems with insufficient resources, e.g., achieving up to 40% energy reduction for a UAV with eight elements of RIS.

Read Entire Article