Electronics, Vol. 13, Pages 1332: Security Improvements of JPEG Images Using Image De-Identification

1 month ago 11

Electronics, Vol. 13, Pages 1332: Security Improvements of JPEG Images Using Image De-Identification

Electronics doi: 10.3390/electronics13071332

Authors: Ho-Seok Kang Seongjun Cha Sung-Ryul Kim

Today, as data is easily exposed through various channels, such as storing data in cloud services or exchanging data through a SNS (Social Network Service), related privacy issues are receiving a significant amount of attention. In addition, for data that are more sensitive to personal information, such as medical images, more attention should be paid to privacy protection. De-identification is a common method for privacy protection. Typically, it is a method of deleting or masking individual identifiers and omitting quasi-identifiers such as birth dates. In the case of images, de-identification is performed by mosaic processing or applying various effects. In this paper, we present a method of de-identifying an image by encrypting only some of the data in the JPEG (Joint Photograph Experts Group) image format, one of the most common image compression formats, so that the entire image cannot be recognized. The purpose of this paper is to protect images by encrypting only small parts, and not the entire image. This work is suitable for the fast and safe transmission and verification of high-capacity images. We have shown that images can be de-identified by encrypting data from the DHT (Define Huffman Table) segment among the JPEG header segments. Through experiments, we confirmed that that these images could not be identified after encrypting only a minimal portion, compared to previous studies that encrypted entire images, and the encryption speed and decryption speed were also faster and more effective than the results of previous studies. A model was implemented to de-identify images using AES-256 (Advanced Encryption Standard-256) and symmetric key encryption algorithm in the Huffman tables of JPEG headers, resulting in the ability to render entire images unidentifiable quickly and effectively.

Read Entire Article