Environments, Vol. 11, Pages 15: Chemical Ecology, Detection and Identification of Subterranean Termites Based on Electronic-Nose Volatile Emissions Analysis

3 months ago 24

Environments, Vol. 11, Pages 15: Chemical Ecology, Detection and Identification of Subterranean Termites Based on Electronic-Nose Volatile Emissions Analysis

Environments doi: 10.3390/environments11010015

Authors: Alphus Dan Wilson Lisa Beth Forse

The effective monitoring and identification of existing subterranean termite populations within coarse woody debris and infested wood in service depend on accurate detection. These insects are often concealed within logs, wooden support structures, walls, and floorboards of buildings. In the absence of external mud tubes, termite infestations normally must be discovered through the destructive exploration of wooden structures to reveal the physical presence of these insect pests. Subterranean termite species are difficult to identify due to similarities in morphological features, but they may be readily distinguished by differences in volatile emissions from which they are divided into chemotaxonomic groups. Consequently, a more effective and nondestructive approach for detection and identification is to take advantage of unique species-specific emissions of volatile organic compounds (VOCs) from termite bodies which easily pass through wooden structures, allowing for detection without physical damage to wood and avoiding expensive DNA analysis. Electronic aroma detection analyses were conducted with an Aromascan A32S electronic-nose (e-nose) instrument, fitted with a 32-sensor conducting polymer (CP) sensor array, for discrimination between four common subterranean termite species based on differences in volatile emissions. Principal component analysis (PCA) of whole-body volatiles effectively distinguished between four termite species with the first two principal components accounting for more than 98% of sample variance (p < 0.01). Unique electronic aroma signature patterns (smellprints) were produced from e-nose sensor array outputs that allowed for the effective identification of termite species based on distinct differences in volatile metabolites released from their bodies. The e-nose methods were determined to be an improved means for rapidly detecting and monitoring termite species in wood. The method is cheaper than conventional detection methods and allows for the timelier discovery of species-specific termite infestations necessary for better management. The e-nose capability of detecting the Formosan termite in indoor living spaces was particularly significant due to the production of naphthalene, a volatile hazardous gas causing many adverse human health effects in enclosed environments.

Read Entire Article