Fermentation, Vol. 10, Pages 93: State of the Art Technologies for High Yield Heterologous Expression and Production of Oxidoreductase Enzymes: Glucose Oxidase, Cellobiose Dehydrogenase, Horseradish Peroxidase, and Laccases in Yeasts P. pastoris and S. cerevisiae

2 months ago 23

Fermentation, Vol. 10, Pages 93: State of the Art Technologies for High Yield Heterologous Expression and Production of Oxidoreductase Enzymes: Glucose Oxidase, Cellobiose Dehydrogenase, Horseradish Peroxidase, and Laccases in Yeasts P. pastoris and S. cerevisiae

Fermentation doi: 10.3390/fermentation10020093

Authors: Milica Crnoglavac Popović Marija Stanišić Radivoje Prodanović

Oxidoreductase (OXR) enzymes are in high demand for biocatalytic applications in the food industry and cosmetics (glucose oxidase (GOx) and cellobiose dehydrogenase (CDH)), bioremediations (horseradish peroxidase (HRP) and laccase (LAC)), and medicine for biosensors and miniature biofuel cells (GOx, CDH, LAC, and HRP). They can be used in a soluble form and/or within the yeast cell walls expressed as chimeras on the surface of yeast cells (YSD), such as P. pastoris and S. cerevisiae. However, most of the current studies suffer from either low yield for soluble enzyme expression or low enzyme activity when expressed as chimeric proteins using YSD. This is always the case in studies dealing with the heterologous expression of oxidoreductase enzymes, since there is a requirement not only for multiple OXR gene integrations into the yeast genome (super transformations), and codon optimization, but also very careful design of fermentation media composition and fermentation conditions during expression due to the need for transition metals (copper and iron) and metabolic precursors of FAD and heme. Therefore, scientists are still trying to find the optimal formula using the above-mentioned approaches; most recently, researcher started using protein engineering and directed evolution to increase in the yield of recombinant enzyme production. In this review article, we will cover all the current state-of-the-art technologies and most recent advances in the field that yielded a high expression level for some of these enzymes in specially designed expression/fermentation systems. We will also tackle and discuss new possibilities for further increases in fermentation yield using cutting-edge technologies such as directed evolution, protein and strain engineering, high-throughput screening methods based on in vitro compartmentalization, flow cytometry, and microfluidics.

Read Entire Article