Fractal Fract, Vol. 7, Pages 812: Computational Analysis of Fractional-Order KdV Systems in the Sense of the Caputo Operator via a Novel Transform

6 months ago 17

Fractal Fract, Vol. 7, Pages 812: Computational Analysis of Fractional-Order KdV Systems in the Sense of the Caputo Operator via a Novel Transform

Fractal and Fractional doi: 10.3390/fractalfract7110812

Authors: Mashael M. AlBaidani Abdul Hamid Ganie Adnan Khan

The main features of scientific efforts in physics and engineering are the development of models for various physical issues and the development of solutions. In order to solve the time-fractional coupled Korteweg–De Vries (KdV) equation, we combine the novel Yang transform, the homotopy perturbation approach, and the Adomian decomposition method in the present investigation. KdV models are crucial because they can accurately represent a variety of physical problems, including thin-film flows and waves on shallow water surfaces. The fractional derivative is regarded in the Caputo meaning. These approaches apply straightforward steps through symbolic computation to provide a convergent series solution. Different nonlinear time-fractional KdV systems are used to test the effectiveness of the suggested techniques. The symmetry pattern is a fundamental feature of the KdV equations and the symmetrical aspect of the solution can be seen from the graphical representations. The numerical outcomes demonstrate that only a small number of terms are required to arrive at an approximation that is exact, efficient, and trustworthy. Additionally, the system’s approximative solution is illustrated graphically. The results show that these techniques are extremely effective, practically applicable for usage in such issues, and adaptable to other nonlinear issues.

Read Entire Article