Materials, Vol. 16, Pages 6896: Optimization of Pore Characteristics of Graphite-Based Anode for Li-Ion Batteries by Control of the Particle Size Distribution

6 months ago 15

Materials, Vol. 16, Pages 6896: Optimization of Pore Characteristics of Graphite-Based Anode for Li-Ion Batteries by Control of the Particle Size Distribution

Materials doi: 10.3390/ma16216896

Authors: Yun-Jeong Choi Young-Seak Lee Ji-Hong Kim Ji-Sun Im

We investigate the reassembly techniques for utilizing fine graphite particles, smaller than 5 µm, as high-efficiency, high-rate anode materials for lithium-ion batteries. Fine graphite particles of two sizes (0.4–1.2 µm and 5 µm) are utilized, and the mixing ratio of the two particles is varied to control the porosity of the assembled graphite. The packing characteristics of the assembled graphite change based on the mixing ratio of the two types of fine graphite particles, forming assembled graphite with varying porosities. The open porosity of the manufactured assembled graphite samples ranges from 0.94% to 3.55%, while the closed porosity ranges from 21.41% to 26.51%. All the assembled graphite shows improved electrochemical characteristics properties compared with anodes composed solely of fine graphite particles without granulation. The sample assembled by mixing 1.2 µm and 5 µm graphite at a 60:40 ratio exhibits the lowest total porosity (27.45%). Moreover, it exhibits a 92.3% initial Coulombic efficiency (a 4.7% improvement over fine graphite particles) and a capacity of 163.4 mAh/g at a 5C-rate (a 1.9-fold improvement over fine graphite particles).

Read Entire Article