Materials, Vol. 18, Pages 1305: Wettability Assessment of Hydrophobized Granular Solids: A Rheological Approach Using Surfactant Adsorption

3 months ago 45

Materials, Vol. 18, Pages 1305: Wettability Assessment of Hydrophobized Granular Solids: A Rheological Approach Using Surfactant Adsorption

Materials doi: 10.3390/ma18061305

Authors: Xilena Villegas Arcos Juliet Daniela Blanco Mayorga Arlex Chaves-Guerrero Ronald Mercado

The wettability of granular solids is a critical parameter in numerous industrial applications, including enhanced oil recovery, advanced material coatings, and nanotechnology. However, traditional methods for assessing wettability, such as contact angle measurements, face significant challenges when applied to heterogeneous or porous solids. This study proposes a rheological methodology as an alternative approach to determine the wettability of granular solids, focusing on bentonite clay modified via sodium dodecylbenzene sulfonate adsorption. Aqueous and oily suspensions of bentonite with varying degrees of hydrophobicity were characterized using viscosity measurements, oscillatory amplitude sweeps, and thixotropic recovery tests. For the system under study, a bentonite concentration of 8% ensures optimal rheological behavior. Furthermore, the adsorption isotherm provides a reliable means of determining varying degrees of solid coverage. The results demonstrated clear correlations between surface coverage and rheological behavior, with increasing hydrophobicity leading to reduced viscosity and viscoelasticity in aqueous systems and a shift toward Newtonian flow behavior in oily systems. These findings were supported by traditional contact angle measurements, which confirmed the relationship between surfactant adsorption and enhanced hydrophobicity. The proposed rheological methodology overcomes the limitations of conventional wettability assessments and provides a new approach for characterizing and optimizing the interfacial properties of particulate systems. This work has broad implications across industries such as petroleum, coatings, and material science, offering a novel pathway for designing systems with tailored wettability and flow characteristics.

Read Entire Article