Photochem, Vol. 3, Pages 360-372: Enhanced Photocatalytic Dehalogenation Performance of RuDoped In2O3 Nanoparticles Induced by Oxygen Vacancy

8 months ago 16

Photochem, Vol. 3, Pages 360-372: Enhanced Photocatalytic Dehalogenation Performance of RuDoped In2O3 Nanoparticles Induced by Oxygen Vacancy

Photochem doi: 10.3390/photochem3030022

Authors: Jingjing Xiang Jinting Shang Zhen Wan

Due to its favorable excited-state physicochemical properties, indium oxide (In2O3) has widely captured attention as a potentially great photocatalyst. However, an inferior charge separation efficiency limits its application. Recently, an increasing amount of evidence has demonstrated that the construction of surface defects is an effective strategy to boost photocatalytic performances. In this work, a ruthenium (Ru) species was successfully introduced into the lattice of In2O3 nanoparticles through co-precipitation and thermal treatment. It was found that the content of surface oxygen vacancies was directly related to the amount of Ru3+ doping, which further determines the separation efficiency of photogenerated carriers. As a result, the 0.5% Ru-In2O3 samples enriched with oxygen vacancies exhibit dramatically enhanced photocatalytic dehalogenation performances of decabromodiphenyl ether and hexabromobenzene, about four times higher than that of the pure In2O3 nanoparticles. This study emphasized the significance of the surface defects of the photocatalyst and may provide a valuable strategy to prepare highly active photocatalysts for photocatalytic dehalogenation reactions.

Read Entire Article