Plasma, Vol. 7, Pages 316-328: Determination of Highly Transient Electric Field in Water Using the Kerr Effect with Picosecond Resolution

3 weeks ago 19

Plasma, Vol. 7, Pages 316-328: Determination of Highly Transient Electric Field in Water Using the Kerr Effect with Picosecond Resolution

Plasma doi: 10.3390/plasma7020018

Authors: Petr Hoffer Václav Prukner Garima Arora Radek Mušálek Milan Šimek

This study utilizes the Kerr effect in the analysis of a pulsed electric field (intensity ~108 V/m, limited by the liquid dielectric strength) in deionized water at the sub-nanosecond time scale. The results provide information about voltage waveforms at the field-producing anode (160 kV peak, du/dt > 70 kV/ns). The analysis is based on detecting the phase shifts between measured and reference pulsed laser beams (pulse width, 35 ps; wavelength, 532 nm) using a Mach–Zehnder interferometer. The signal-to-noise ratio of the detected phase shift is maximized by an appropriate geometry of the field-producing anode, which creates a correctly oriented strong electric field along the interaction path and simultaneously does not electrically load the feeding transmission line. The described method has a spatial resolution of ~1 μm, and its time resolution is determined by the laser pulse duration.

Read Entire Article