Sustainability, Vol. 16, Pages 3477: Vineyard Microclimatic Zoning as a Tool to Promote Sustainable Viticulture under Climate Change

3 weeks ago 19

Sustainability, Vol. 16, Pages 3477: Vineyard Microclimatic Zoning as a Tool to Promote Sustainable Viticulture under Climate Change

Sustainability doi: 10.3390/su16083477

Authors: André Fonseca José Cruz Helder Fraga Cristina Andrade Joana Valente Fernando Alves Ana Carina Neto Rui Flores João A. Santos

Understanding microclimate spatial variability is crucial for sustainable and optimised grape production within vineyard plots. By employing a combination of a microclimate model (NicheMapR) and multiple climate data sources, this study aimed to achieve microclimatic analysis in two vineyard plots, Quinta do Bomfim (northern Portugal) and Herdade do Esporão (southern Portugal). This approach provides an innovative 10 m spatial resolution for climate variables. This study incorporated local station hourly data with quantile mapping bias correction on the ERA5-land data. The microclimate model output was employed to perform bias correction on a EURO-CORDEX model ensemble. Climate extreme and bioclimatic indices specifically targeted to viticulture were calculated for each vineyard plot. The 10 m scale was analysed to identify potential shifts in temperature extremes, precipitation patterns, and other crucial climatic variables for grape cultivation within each specific plot. The significance of microclimate analyses was higher in areas with intricate topography, while in areas with smooth slopes, the variation of climatic variables was determined to be negligible. There was a projected increase in the median temperature of approximately 3.5 °C and 3.6 °C and a decrease in precipitation of approximately 98 mm and 105 mm in Quinta do Bomfim and Herdade do Esporão, respectively, when comparing a future scenario for the period 2071–2100 against the historical period (1981–2010). Hence, this study offers a comprehensive and future-oriented method for analysing microclimates in vineyard plots. By incorporating geospatial data, ERA5-land data, and the microclimate NicheMapR model, this research aimed to enhance the understanding of current microclimates and future climate scenarios for viticulturists.

Read Entire Article