Gels, Vol. 9, Pages 641: Alleviating Effect of a Magnetite (Fe3O4) Nanogel against Waterborne-Lead-Induced Physiological Disturbances, Histopathological Changes, and Lead Bioaccumulation in African Catfish

8 months ago 37

Gels, Vol. 9, Pages 641: Alleviating Effect of a Magnetite (Fe3O4) Nanogel against Waterborne-Lead-Induced Physiological Disturbances, Histopathological Changes, and Lead Bioaccumulation in African Catfish

Gels doi: 10.3390/gels9080641

Authors: Afaf N. Abdel Rahman Basma Ahmed Elkhadrawy Abdallah Tageldein Mansour Heba M. Abdel-Ghany Engy Mohamed Mohamed Yassin Asmaa Elsayyad Khairiah Mubarak Alwutayd Sameh H. Ismail Heba H. Mahboub

Heavy metal toxicity is an important issue owing to its harmful influence on fish. Hence, this study is a pioneer attempt to verify the in vitro and in vivo efficacy of a magnetite (Fe3O4) nanogel (MNG) in mitigating waterborne lead (Pb) toxicity in African catfish. Fish (n = 160) were assigned into four groups for 45 days. The first (control) and second (MNG) groups were exposed to 0 and 1.2 mg L−1 of MNG in water. The third (Pb) and fourth (MNG + Pb) groups were exposed to 0 and 1.2 mg L−1 of MNG in water and 69.30 mg L−1 of Pb. In vitro, the MNG caused a dramatic drop in the Pb level within 120 h. The Pb-exposed group showed the lowest survival (57.5%) among the groups, with substantial elevations in hepato-renal function and lipid peroxide (MDA). Moreover, Pb exposure caused a remarkable decline in the protein-immune parameters and hepatic antioxidants, along with higher Pb residual deposition in muscles and obvious histopathological changes in the liver and kidney. Interestingly, adding aqueous MNG to Pb-exposed fish relieved these alterations and increased survivability. Thus, MNG is a novel antitoxic agent against Pb toxicity to maintain the health of C. gariepinus.

Read Entire Article